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We shall study the dynamics of the redistribution of the stress-strain state and the 
temperature field under the conditions of solidification of a binary mixture in axisymmetric 
enclosures. The enclosures are represented by a cylindrical cavity in an infinite block, 
a cylindrical channel bounded by an elastic shell, and a ring-shaped channel, formed be- 
tween two elastic shells with different radius. Cooling temperature conditions are created 
in the medium outside the enclosure. The solidification front moves from the outer radial 
contour of the enclosure toward the symmetry axis, displacing the impurity in the liquid 
phase with some coefficient of distributivity. The density of the liquid phase drops in a 
j~p-like manner at the solidification front, which raises the pressure in it and causes a 
redistribution of the stresses in the medium. We assume that the temperature of the phase 
transition on the solidification front is a function of the instantaneous values of the 
pressure and concentration of the impurity. Problems of this type arise in modern techno- 
logy in the calculation of the dynamics of solidification of materials, in which the shear 
stresses relax comparatively quickly and have virtually no effect on the magnitude of the 
pressure developing in the liquid phase and reaching values which are equilibrium on the phase 
diagram of the solidification process. An example of such solidification is the freezing of 
brine, when the freezing front forces the dissolved salt impurity back into the liquid phase, 
increasing the concentration in it, with pressure levels of several hundreds of megapascals 
being developed. We shall study the elastoplastic model of the mechanical behavior of a 
solid mass and the elastic model for shells. We shall solve the problem in a planar axi- 
symmetric formulation, in which the stress, temperature, concentration, and displacement 
fields are independent of the coordinate parallel to the axis of the enclosure. 

In accordance with the geometry and physical content of the problem, we distinguish 
three different zones according to their heat and mass transfer and mechanical character- 
istics with the parameters indexed correspondingly as i = i, 2, and 3. The first zone contains 
the liquid phase of the mixture (a < r < s(Y)), the second (s(~) < r < b) is the solid 
phase of the mixture, and the third-(b ~ r) occurs for solidification-in a cavity of some 
solid mass~ behaving in an elastoplasti[ manner under a load. In the case of enclosures in 
the form of shells, there is no third zone; the contour r = b is the radius of the external 
shell and the contour r = a can be the radius of the internal shell; when solidification 
occurs within a single cylindrical shell we obtain the solution by setting a = 0. We 
shall write down the corresponding system of equations for heat transfer~ diffusion of the 
impurity, and the stress-strain state assuming that a constant cooling temperature T m is 
given throughout the entire process either on the contour of the external shell or at a 
point infinitely far away from the cavity in the solid mass. 

The system of heat transfer equations has the form 

~ - = = ~ W ( ~ - ~ 7 ) ,  ~ = 1 , 2 ,  ~ w  ~ _ , - ~ v ; - ~  I ~ = ~ = .  P ,~ '  

r~(s, ~) = r~(s, ~ ) =  Tp(~), ~p(~o) = rp, o, T,~(b, ~) = r~(b, :~), 
l imT 3 ( r ,~ )=T~  or T 2(b,~)=T~, 
7 ' - - > ~  

S(~o) = b, T~(~o) ---- T~o(r ). 

Here T i is the temperature; a i and h i are the coefficients of thermal diffusivity and ther- 
mal conductivity; s is the latent heat; Pi is the density; T and ~0 are the instantaneous 
time and the initial time; Ti0 is the initial temperature distribution; s is the coordinate 
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of the solidification front; and Tp and Tpo are the instantaneous and initial values of the 
phase-transition temperature. 

We assume that the redistribution of the impurity occurs only in the liquid and solid 
phases of the mixture in the enclosure, so that the corresponding equations of diffusion are 
written down only in the first and second zones: 

r ~ T =  Oi  r a r } '  i = 1,2, 

�9 

D: Tr I~=~ - -  D~ a~ I~,  = s (c~ - -  C~)r=~, 

c2(s, ~) = kcl.(s , ~), c~r ,  To) = co, 

'~ I ~ 1 =0, a'-7" ~=a = "57 .=~ 

where c i and D i are the concentration and diffusion coefficients; c o is the initial concen- 
tration of the impurity in the liquid phase, calculated in terms of the mass concentration x; 
and k is the distribution factor of the impurity [i]. 

The equations for the stress-strain state of the problem of solidification, neglecting 
diffusion of the impurity, are studied in [2], where Tp is a function of the pressure in 
the liquid~ phase p, unlike this work where T D is also a function of the impurity concentra- 
tion c i. We shall use the solution presented-in [2] for the indicated equations, obtained 
assuming a hydrostatic distribution of stresses in the solidifying mixture and having the 
form of the equation relating the pressure p and the position of the solidification front s. 

In the case of solidification in the space between two thin-walled cylindrical shells 
we write the indicated mixture in the explicit form 

l 1 t l  ~176 

{(  o=)< "]/ 
+ T ,  r l + i - -  , 

( i )  

where k a = 3a2/(4E=6a); Xex t = 3b2/(4Eext6ext); E , Eex t and 8=, 6ex t are the moduli of 

elasticity and the thicknesses of the inner and outer shells; k I and k= are the bulk moduli 
of elasticity of the liquid and solid phases of the mixtures; ~V = i - P2/Pl is the co- 

efficient of volume deformation accompanying solidification (=V > 0); os, Oex t are the 

known internal pressure on the inner shell and the external pressure on the external shell; 
and Pin is the known internal initial pressure in the space between the shells. 

When solidification occurs in the cylindrical cavity in an elastoplastic solid mass 
we write out the above-mentioned relationship following [2]. We assume that the mixture 
solidifies in the volume formed by the radial contour of the cavity and the surface of the 
interior elastic shell with smaller radius r = a. 

At the elastic stage of deformation of the solid mass the explicit relationship between 
p and s has the form 

(2) 
r P ----- t tn+  L2( t - -  vs)-~., + ~v 

+~ 1 +I-- . 

Here o~ is the radial stress at infinity; G 3 = E3/[2(I - ~3)]; E3, ~3 are the modulus of 
elasticity and the Poisson ratio of the solid mass. 

At the stage of elastoplastic deformation of the solid mass, occurring after the pres- 
sure reaches a value of pg, the relationship between the pressure and the solidification 
front can be written as a transcendental equation 
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p = 2 ( l - - v 3 ) ( ~ + %  i + l n  av i---~ + - - ~  + 

) ])))) a2 s 2 

+ P t Z r  + k= L k, 7 V a,,, 

(3) 

where pg = 2(1 - v 3) + Ts; ~3 is the creep parameter of the mass for Mies' condition of 
plasticlty. 

To close the system of equations presented for the unknowns Ti(m) , ci(~) , Tp(T), s(~) 
and p(~) it is necessary to add a relation between the phase-transition temperature and the 
pressure and concentration. This equation can be obtained from the condition that the 
chemical potentials are equal at the interface: 

f i i ] dTp 1,e 1 f de, d% ) .Mt~---~]dp--Ml--~p+BdTplni_<~ R T p ~ i - -  i--% =0,  

where M is the mass of a kilomole of solvent and R is gas constant. 

The complete system of equations presented above can be solved numerically using an 
appropriate algorithm, but this is a quite laborious path to the quantitative results. 
The mutual effect of the temperature, impurity concentration, and stress-strain fields 
taking into account the pressure and concentration dependence of Tp can be determined by 
simplifying the starting system. The heat transfer part of the system is substantially 
simplified by assuming that there is no temperature gradient in the liquid phase and the 
temperature distribution in the solidified zone is quasistationary. The diffusion part 
of the system is simplified by assuming that there are no concentration gradients in either 
phase; we shall assume that all of the redistribution occurs on the solidification front 
according to the equation of balance of concentration in the liquid phase c = c1(T) 

(4) 

If it is assumed also that the mixture ~s incompressible in both phases k I = k= = 
and that the internal shell is rigid for the case of solidification in a cavity X a = O, 
then instead of the transcendental equation (3) we shall obtain analogously to (I) and 
(2) an explicit relationship p(s) at the stage of plastic deformation of the solid mass. 

Under the assumptions made the starting system of partial differential equations 
reduced to a system of two ordinary differential equations in the dimensionless form 

ay ~ (oM. op). (5) 

(~ln 1-~ ) (l-k) \ i - - ~  Op dO p=r ) dc, (6)  

$ where y=y; @ , p = ~ - ~ O ~ = T ~ ; t  -!" ]=2"% =~2T~176 RT o, _ P_~e 
--%' P0' ~P~b ~ ' ~=M-F'~~ ; and z0, T0, and p0 are the 

time, temperature, and pressure scales. 

We note that under the above-indicated simplifying assumptions we obtain for the para- 
meters c and f entering into the system (5) and (6) the explicit expressions (1)-(4), and 
the expressions for the pressures (i) and (2) will give quantitatively the same result, if 
o~ # 0 and the mechanical parameters are related by 

G~ = b/(2Xb)t 2o=(1 --v3) = o d. (7)  

This relation makes it possible to rescale the examples of the calculation of solidification 
between shells to the case of solidification in a cavity filled with a mixture in a medium 
which remains elastic throughout the entire process. 
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Approximate calculations using theproposed model are presented for freezing of a water 
solution of salt NaCI. The following values of the parameters were chosen for the 
calculations:c0 = i h, To = 273 K, P0 = i kg/cm 2, k = 0.01, R = 8.32-103 J/(k'mole), M = 
0.018 kg/mole, s = 334"103 J/kg, X 2 = 2.21 W/(m'K), Pl = 1000 kg/m 3, p= = 910 kg/m s, 6= = 

6 b = 0.01 m, E= = E b = 2'106 kg/cm 2, a = 0, b = i m, kz = k2 = ~, o= = a b = Pb = ~ = U. 

Figures 1-4 show the results of the calculation of freezing of a salt solution in a 
cavity for the elastic (solid lines) and elastoplastic (broken lines) models of the solid mass 
containing the cavity. The dot-dashed curves show the calculation with zero impurity con- 
centration. For comparison, seven variants of the conditions of the problem are presented 
(curves 1.1-1.3 refer to variant i, and curves 2-7 refer to the remaining variants). Chrves 
1.1-1.3 correspond to an initial concentration of x = 2.5, 5, and 15 kg/m 3 at T M = 263 K; 
curves 2 and 3 correspond to G 3 = 1"104 and 0.3"104 kg/cm 2 at T m = 268 K and x = 15 
kg/m 3, and curves 4 and 5 correspond to the same values of T M and Gs, but with x = 0. The 
graphs 6 and 7 were constructed for the elastoplastic model of a solid block containing a 
cavity for the same values ~s = 5 kg/cm =, G 3 = 5"104 kg/cm 2, x = 5 kg/m 3 for T m = 268 and 
263 K. We note that according to (7) the lines 1-5 correspond also to the case of freezing 
in a single shell, for which with b = 0.27 m and E b = 2"106 kg/m = the value G s = 1"104 kg/cm 2 
corresponds to 6 b = 2-10 -3 m, and the value G 3 = 0.3"104kg/cm 2 corresponds to 6 b = 6.7"10-~ m. 

Analysis of the computational results shows that the impurity substantially affects the 
dynamics of the front s (Fig. I), the pressure p (Fig. 2), the phase-transition tempera- 
ture T D (Fig. 3), and the concentration c (Fig. 4). In the absence of the impurity (x = 0, 
curves~4 and 5) the process proceeds either to complete solidification (Curve 5 in Fig. i) 
or the front approaches a stationary value ys4 over an infinite time, while the pressure 
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assumes equilibrium values Ps~ (curve 4 in Figs. 1 and 2). The calculations for the same 
values of the cooling temperature T M and the parameter G 3 but taking into account the 
impurity give lower pressures (curves 2 and 3 in Fig. 2); in addition, increasing the 
strength of the solid mass (or shell) raises the pressure level. In the presence of the 
impurity, first of all, complete solidification is not observed, and all parameters of the 
process assume stabilized values over a finite time interval at some time denoted by the 
symbol V on the graphs; second, the pressure for x ~ 0 is lower than for x = 0 (curves 2-4). 
Increasing the initial impurity concentration lowers the pressure developed and the volume 
of the solidified phase, as illustrated by curves 1.1-1.3. 

Taking into account the plastic deformations of the solid mass surrounding the cavity 
substantially reduces the pressures developed, which for two values of T M have very close 
graphs as a function of time (curves 6, 7 in Fig. 2), but the stabilized values are achieved 
at different times. For an elastoplastic model the reduction in T M accelerates the conver- 
gence of the parameters to the stabilized values, increases the volume of the solidified 
phase (see Fig. i), and substantially increases the stabilized concentration (curves 6 and 
7 in Fig. 4). This strong increase in the stabilized value of the concentration is deter- 
mined by the acceleration of solidification as T M decreases, which under real conditions 
reduces the time over which the impurity concentration fields are equalized in the phases of 
the mixture. This effect is observed in a quantitatively less distinct form also for an 
elastic model of the cavity (or the case of a single shell) - this is evident from a com- 
parison of curves 2 and 1.2 in Fig. 4. 

In conclusion, we note the following. First of all, the results of the calculations of 
the solidification in the space between coaxial shells are qualitatively virtually identical 
to the examples presented here. Second, according to the calculations performed with k 
varying in the range from 1-10 -2 to 1.10 -6 , its decrease intensifies the forcing of the 
impurity into the liquid phase, which reduces the magnitude of the stabilized pressure. 
Third, the calculations performed demonstrated that it is possible to forecast the loading 
and to estimate the reliability of the enclosures containing the solidifying mass. Fourth, 
the calculations did not reveal the conditions under which solidification occurs with the 
existence of a transition phase. 

The above-presented model of solidification does not include the possibility of the 
appearance of a transitional phase, studied in [3, 4]. In order to describe the process of 
solidification with a transitional phase in the problem studied here the mathematical model 
must be supplemented. The transitional phase in the problem under study does not appear 
when the temperature of the solid phase is lower than the phase-transition temperature. 
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DEVELOPMENT OF A TEMPERATURE FIELD IN A TURBULENT FLOW 

WITH UNSTEADY HEAT TRANSFER 

B. V. Perepelitsa and Yu. M. Pshenichnikov UDC 536.24 

Heat-transfer processes occurring under unsteady conditions are encoutnered fairly 
often in different areas of modern technology. The theory of unsteady heat transfer in 
turbulent flows is still far from complete, which has to do with the serious difficulties en- 
countered in attempting to mathematically describe the processes. Calculation of these 
processes is also considerably complicated bythe need to solve a coupled problem, since 
processes of heat transfer in the heat carrier are inextricably allied with the development 
of a temperature field in the walls of the channel [i, 2]. 

The experimental study'of unsteady heat transfer in turbulent flows is a rather compli- 
cated technical problem, due both to the effect of a large number of parameters on the 
character of the process and to the need to rapidly collect and analyze a large volume of 
information. Measurements show that the effect of transience on heat transfer may be 
substantial [2-4]. At the same time, calculations with models which include the hypo- 
thesis of a quasisteady structure for the turbulent flow do not always yield satisfactory 
results [5]. In connection with this, a deeper understanding of the processes taking 
place in unsteady heat transfer requires sufficiently complete and reliable information on 
the velocity and temperature fields in the immediate vicinity of the wall, including the 
region of the viscous and thermal sublayers. 

Here we report results of measurement of the development of the temperature field in a 
turbulent flow of water with a sudden change in heat release in the channel wall. The 
measurements were made in the Reynolds number range from 11,200 to 112,000 and embrace the 
region near the wall, including the viscous sublayer. The tests were conducted on a closed 
hydrodynamic loop which included a constant-level tank, working section, receiving tank, 
cooler, and pump. The working section (Fig. i) was a channel 1 of rectangular cross section 
measuring 20 • 40 mm and consisting of a hydrodynamic stabilization section 96 diameters 
long and a heating section 3 which was 36 diameters long. Three of the walls of the heated 
section were made of organic glass, while the remaining wall (40 ram wide) was made of 
stainless steel 0.1 nun thick. Tlie steel wall was stuck onto a glass-textolite base. The 
strip was washed by the flow of working fluid and heated by the passage of an electrical 
current through it. 

The temperature in the flow was recorded with a specially made thermocouple probe 2 of 
the needle type. The transverse dimension of the hot junction was about 5 ~m. The probe 
was inserted into the flow through the top, unheated wall of the channel 78 cm from the 
beginning of the heating section. Temperature in the flow was measured relative to the 
temperature of the cold wall in the test section. This kept the test results from being 
affected by small fluctuations n the temperature of the working liquid during the tests. 
The temperature drop between the hot and cold walls of the channel was no greater than 10 K. 
The absolute error of the measurements of instantaneous temperature was ~0.07 K. More 
details concerning the design of the probe and the set-up of the experimental unit are 
available in [6]. 

The test unit was supplied with heat from adc generator. The process of unsteady heat 
transfer caused a sudden change in the amount of electric power supplied to the strip heater, 
which in turn led to a sharp change in heat release. Results of measurements of static 
characteristics of temperature pulsations in a turbulent flow during steady heat transfer 
were published in [7]. 
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